CityWat – Software for integrated modelling of the urban water cycle

Problems

- (e.g., water and managers environmental regulators) cannot track water and pollutants through the water cycle, making it difficult to understand system impacts of their decisions.
- Current models (e.g., InfoWorks ICM) are too inflexible simulate modern design options that are interconnected at a systems scale.

What does CityWat do?

- Brings together drainage and water resources planning
- Evaluates infrastructure based on service delivery and in-river impacts
- Enables modelling of sewer spills with minimal data/computing power

How does CityPlan-Water do it?

- By focussing on information transfer between sub-systems, CityWat ensures models of different sub-systems are compatible
- By strategically reducing model complexity, CityWat enables a detailed representation where it matters and 'good enough' every else – providing fast and integrated simulations
- By using a physically based modelling philosophy, a wide range of options and scenarios can be explored.

How can you use CityWat?

We are creating a generic and expandible modelling framework based on CityWat (WSIMOD) that is useable by anyone with Python programming experience. We are looking for money to create a GUI! All current CityWat case studies are open-

https://github.com/barneydobson/citywat https://github.com/barneydobson/cwsd_partition https://github.com/barneydobson/cwsd_demand

CAMELLIA Imperial College London

Barnaby Dobson

CityWat combines the disparate sectors of water supply,

wastewater and the environment into a unified framework: https://doi.org/10.1088/1748-9326/abb050

CityWat strategically simplifies to enable detailed investigation into specific questions (e.g., how do changes to commuter impact water quality): wa.2021.641462

CityWat provides physically based evaluation for a Operation control for abstraction range of natureand discharges based, management focussed, infrastructure upgrades and Demand management cycle interventions: Leakage reduction https://doi.org/10.10 88/1748-Green roofs 9326/abb050 Rainwater harvesting Storm tanks

CityWat uses graph theory to provide a realistic but reduced complexity sewer network representation: https://doi.org/10.1002/essoar.10507590.1

CatchWat – software for integrated modelling of the catchment water systems

Problems

- Current water quality management at a catchment scale lacks a more efficient strategy that coordinates urban-rural measures
- Existing integrated models (e.g. HYPE) cannot simulate the integrated urban water cycle.

What does CatchWat do?

- Simulate physical processes in the whole pollutants pathway
- Develop coordinated management strategies via simulating urban-rural measures' effects (e.g. fertilisers reduction and enhanced wastewater treatment)
- Test management strategies and evaluate their performances in water quality improvement

How does CatchWat do it?

- By integrating a variety of conceptual models, including HYPE and CityWat, and expanding the contextual modelling boundaries
- By parameterising interventions on physical processes embedded in urban-rural water cycles
- By developing and simulating scenarios with various combinations

How can you use CatchWat?

We are creating a more flexible modelling framework (WSIMOD) CatchWat for catchment planning and nature-based solutions that is useable by anyone with Python programming experience. All current CatchWat case studies are available on request

CAMELLIA Imperial College

London

Levang Liu CatchWat integrates physical processes embedded in urban-rural water cycle at a catchment-lumped scale: Problems https://doi.org/10.1016/j.scitotenv.2021.150642 Leakage treatment Effluent

______ CatchWat was used to compare coordinated and uncoordinated urban-rural management strategies: https://doi.org/10.1016/j.scitotenv.2021.150642

interactions in resulting water quality at critical checkpoints:

CatchWat was used to test multi-catchment coordinated scenarios for more efficient loads reduction allocation:

CityPlan-Water - Design and evaluation framework for Water **Neutrality at a city scale**

- Projected new urban development in cities will reduce Urban Water Security (UWS) and increase the impacts on the existing urban water system.
- Water Neutrality (WN) seems difficult to be understood and assessed by urban planners and other key stakeholders.

What does CityPlan-Water do?

- Provides a new concept for Water Neutrality (WN) and the impacts from new urban developments at a city scale.
- Applies WN design options to different scenarios based on future urban Evaluates WN at a city scale for a series
- of urban design scenarios through the Water Neutrality Index (WNI).
- Informs about the opportunities of offsetting the new impacts inside vs. outside the new development area.

How does CityPlan-Water do it?

- By integrating the CityWat integrated water management evaluation model with GIS spatial data.
- By developing urban design scenarios based on the 10-year projected housing target in London.
- By scoring UWS indicators (water demand, flooding and water quality) based on WNI percentages and specific

CityPlan-Water is used to test the Water Neutrality Index (WNI) for several Water Neutrality scenarios at a city scale

CAMELLIA Imperial College

London Pepe Puchol-Salort

CityPlan-Water integrates Water Neutrality (WN) systemic design solutions with an Urban Water Security (UWS) evaluation toolkit, all being spatially represented in a GIS tool.

CitvPlan-Water studies urban form properties relevant to Water Neutrality at a city scale from a detailed spatial dataset n GIS. These urban form maps are developed by our team

